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Abstract—In this paper, we focus on the incentive mechanism design for a vehicle-based, nondeterministic crowdsensing system. In

this crowdsensing system, vehicles move along their trajectories and perform corresponding sensing tasks with different probabilities.

Each task may be performed by multiple vehicles jointly so as to ensure a high probability of success. Designing an incentive

mechanism for such a crowdsensing system is challenging since it contains a non-trivial set cover problem. To solve this problem, we

propose a truthful, reverse-auction-based incentive mechanism that includes an approximation algorithm to select winning bids with

a nearly minimum social cost and a payment algorithm to determine payments for all participants. Moreover, we extend the problem

to a more complex case in which the Quality of sensing Data (QoD) of each vehicle is taken into consideration. For this problem,

we propose a QoD-aware incentive mechanism, which consists of a QoD-aware winning-bid selection algorithm and a QoD-aware

payment determination algorithm. We prove that the proposed incentive mechanisms have truthfulness, individual rationality, and

computational efficiency. Moreover, we analyze the approximation ratios of the winning-bid selection algorithms. The simulations,

based on a real vehicle trace, also demonstrate the significant performances of our incentive mechanisms.

Index Terms—Incentive mechanism, nondeterministic crowdsensing, quality of data, reverse auction, truthful

Ç

1 INTRODUCTION

IN recent years, vehicles have been equipped with more
and more components that can provide a better user

experience such as wireless network interfaces, event data
recorders, vehicular computers, etc. Vehicles that carry
these components can be considered programmable and
powerful mobile sensors which are able to communicate
with the Internet and with each another. Furthermore, they
move along roads day after day, and thus have the potential
to collect data and permit the enabling of numerous
novel applications such as traffic management [2], mobile
advertising [3], [4], environment monitoring [5], [6], etc.
All of these applications can be formalized as outsourcing
location-based sensing tasks to mobile vehicles, which are
also called vehicle-based crowdsensing [7], [8]. Roughly speak-
ing, vehicle-based crowdsensing involves a platform that
receives task requests from platform users and dispatches
sensing tasks to mobile vehicles that are willing to serve.

Stimulating enough vehicles to participate in the crowd-
sensing is one of the most critical issues since it determines
whether the crowdsensing can provide adequate sensing
quality. While performing sensing tasks, participants may

consume some resources, such as battery, storage, cpu, etc.,
and may even suffer threats to their privacy [9], [10], [11].
These factors could discourage them from participating in
crowdsensing unless they receive sufficient rewards to com-
pensate for the expenditures and the risks. Hence, an incen-
tive mechanism that determines which participants should
be recruited and how much reward should be paid to each
of them is necessary. However, what makes the incentive
mechanism design highly complicated is that a participant
might strategically claim a higher cost than the real one to
increase his/her payoff. Additionally, the mechanism also
needs to minimize the social cost (i.e., the total sensing cost)
and ensure the successful probability of performing tasks,
which all contribute to the challenge.

In this paper, we focus on the incentive mechanism
design for vehicle-based, nondeterministic crowdsensing.
Consider a typical vehicle-based, nondeterministic crowd-
sensing system like [8], which consists of a platform, several
platform users, and many mobile vehicles. The platform
receives the sensing tasks associated with some Places of
Interest (PoIs) from the platform users. The vehicles move
along streets and can communicate with the platform via
road-side infrastructures or cellular networks so that the
platform can select vehicles to perform the sensing tasks.
In general, these tasks are associated with different PoIs.
Vehicles might be selected to perform a task only when they
pass by the corresponding PoI, as illustrated in Fig. 1. Real
vehicular trace analysis has shown that the mobile trajectory
of each vehicle in real applications is nondeterministic [3],
[8], [12], [13], [14]. Therefore, it is a probabilistic event that
each vehicle will pass by a PoI and will perform the related
task (i.e., covers this task). Due to this nondeterminacy,
the platform user will require that the probability of each
task being performed successfully is no less than a specified
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threshold to guarantee the total sensing quality of the
crowdsensing. The platform, therefore, needs to stimulate
enough vehicles to participate in the crowdsensing by using
an incentive mechanism. This incentive mechanism should
consider the truthfulness, individual rationality, computa-
tional efficiency, minimum social cost, and the constraints
of vehicles’ possible mobile trajectories simultaneously.

Currently, there have been many incentive mechanisms
designed for crowdsensing/crowdsourcing [15], [16], [17],
[18], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28], [29],
[30], [31], [32], [33]. In [15], Yang et al. design two incentive
mechanisms, CCM and UCM, to maximize the utility of the
crowdsourcer. They build the incentive mechanisms based
on Stackelberg game and reverse auction, respectively. In
[16], Zhao et al. propose an online incentive mechanism to
maximize the utility of the crowdsourcer within a given
budget. In [17], Wei et al. tend to stimulate both workers
and crowdsourcers to participate in the dynamic mobile
crowdsensing. They design a general incentive mechanism
framework based on double auction to ensure the budget
balance. In [24], Feng et al. design a social cost efficient
incentive mechanism, TRAC, for the location-aware collabo-
rative crowdsensing. In TRAC, each mobile user can per-
form a few location-related tasks and multiple users are
stimulated to cooperatively perform a group of tasks.
However, all of these incentive mechanisms only involve
deterministic crowdsensing in which each user is assumed
to perform a task either with a probability of 100 percent or
with a zero probability. In contrast, we focus on the nonde-
terministic crowdsensing where tasks are performed by
each vehicle/user with different probabilities from zero to
100 percent. Such a nondeterministic crowdsensing scenario
is more consistent with the real world. Nevertheless, it will
result in a non-integer set cover problem with non-linear
constraints. The aforementioned incentive mechanisms for
deterministic crowdsensing are not competent for this novel
nondeterministic crowdsensing.

In this paper, we design a truthful, reverse-auction-based
incentive mechanism to meet the requirements of our sce-
nario. Since our mechanism uses a similar process for each
platform user, we will only consider the scenario that con-
sists of a single platform user. First, the platform receives
the tasks, probability thresholds, and the time intervals
from the platform user. It then sends them to the vehicles
registered in the platform. After that, the vehicles reply
with bids that contain the tasks on their possible trajectories
and the corresponding costs. Next, the platform decides
which bids should be selected to minimize the social cost,
while ensuring that the joint probability of each task being

successfully performed is no less than the given threshold.
The platform also determines a payment for each bid in
order to guarantee that each vehicle will report the real costs
(i.e., the truthfulness) and that the payoff of each bid is non-
negative (i.e., the individual rationality). Finally, the plat-
form will notify the vehicles of their winning bids, pay
the vehicles after receiving sensing data from them, charge
the platform user for the payments, and send the platform
the sensing data. In summary, the incentive mechanism
mainly consists of a winning-bid selection algorithm and a
payment determination algorithm. Indeed, the designed
incentive mechanism can be applied in many fields in real
life, such as environment and noise monitoring [5], [6],
crowd labeling [19], [34], social networks [35] and so on.

We highlight the main contributions as follows:

� We design a reverse-auction-based incentive mecha-
nism for vehicle-based, nondeterministic crowdsens-
ing. To the best of our knowledge, this is the first work
on the crowdsensing incentive mechanism design that
takes into consideration truthfulness, individual ratio-
nality, computational efficiency, social cost efficiency,
and the nondeterministic crowdsensing scenario,
where each task is performed with a joint probability,
simultaneously.

� We prove that the winning-bid selection problem in
our scenario is NP-hard since it leads to a non-trivial
set cover problem with non-linear constraints. To
solve the problem efficiently, we propose a nearly
optimal winning-bid selection algorithm and ana-
lyze the approximation ratio.

� We propose an algorithm to determine the payments
for the winning bids and theoretically prove that
these payments can ensure the truthfulness and indi-
vidual rationality of the mechanism.

� We extend the incentive mechanism design problem
to a case where the Quality of Data (QoD) is taken
into consideration. We propose a QoD-aware incen-
tive mechanism consisting of a QoD-aware winning-
bid selection algorithm and payment determination
algorithm. We prove that the QoD-aware incentive
mechanism is truthful and individually rational.
Moreover, we analyze the approximation ratio of the
QoD-aware winning-bid selection algorithm.

� We conduct extensive simulations on a real vehicle
trace to demonstrate the significant performances of
the proposed incentive mechanisms.

The rest of the paper is organized as follows. In Section 2,
we introduce the system model and the problem. Then, we
describe the detailed design of our mechanism and the
related extension in Sections 3 and 4, respectively. The theo-
retical analysis and the evaluation of the incentive mecha-
nisms are presented in Sections 5 and 6, respectively. After
reviewing the related work in Section 7, we finally conclude
the paper in Section 8.

2 SYSTEM MODEL AND PROBLEM

2.1 System Model
We consider a vehicle-based, nondeterministic crowdsens-
ing system which consists of a platform, several platform
users, and many vehicles. The platform accepts sensing
requests from platform users who connect to the platform
via Internet and negotiates with the vehicles either via

Fig. 1. An example of vehicle-based, nondeterministic crowdsensing:
four vehicles move on their possible trajectories, pass by several PoIs,
and collect sensing data during the time interval.
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cellular networks or road-side infrastructures [36], [37], [38],
[39], which are left up to their preference. The platform will
pay the rewards to vehicles after receiving data from them
and will charge the platform users for the payments.

The system might contain several platform users. Since
the sensing tasks for different platform users are distinct, the
submitted bids are also separate. Here, the bid submitted by
each vehicle indicates the cost of performing one platform
user’s sensing tasks, instead of the cost of performing all plat-
form users’ tasks on this trajectory. For the simplicity of
descriptions, we only consider one platform user, and we let the
platform conduct the same operations for other platform users in
the practical scenario. The platform user wants to collect data
(e.g., traffic congestion, noise pollution, air quality, etc.) from
m PoIs which are distributed in different streets. Hence, it
produces m PoI-related sensing tasks. These sensing tasks
are denoted as a task set S ¼ fs1; s2; . . . ; smg in which si is
the ith task (1 � i � m). Since the sensing data is time-sensi-
tive, the platform user requires that the tasks are performed
within a time interval ½t1; t2�. The sensing data is meaningful
only when the tasks are completed within the time interval
½t1; t2�. Without Loss Of Generality (WLOG), we assume that
t1 ¼ 0 and t2 ¼ D. Since each task is performedwith a proba-
bility in the nondeterministic crowdsensing, the platform
user demands that the probability of each task in S being suc-
cessfully performed be no less than a threshold h.

The vehicle-based, nondeterministic crowdsensing sys-
tem also includes n mobile vehicles, denoted as V ¼ fv1;
v2; . . . ; vng. These mobile vehicles move around different
streets so that they might cover and perform the sensing
tasks in S. In general, the mobile behaviors of vehicles are
uncertain. This characteristic has been captured by many
real vehicular traces [3], [8], [12], [13], [14], [38]. Based on this
observation, we assume that each vehicle has multiple possi-
ble trajectories and that each trajectory has a probability.
More specifically, vehicle vj has lj possible trajectories. Each
trajectory might cover a group of tasks. The tasks covered by
vehicle vj are denoted as fSj

1; S
j
2; . . . ; S

j
lj
g in which Sj

k is the
set of tasks covered by the kth trajectory (1 � k � lj). Since
the execution time of tasks is much smaller than the driving
time of vehicles and each vehicle can obtain more extra
income by performing more sensing tasks on a trajectory,
each vehicle is always willing to perform all sensing tasks on
its one driving trajectory. That is, the tasks in Sj

k, covered by
the same trajectory, will be performed as a whole which
means that either all of the tasks are performed or none of
them are. Moreover, the probability of tasks in Sj

k being per-
formed is the probability of the kth trajectory, denoted by qjk.
When a vehicle performs sensing tasks, it will consume bat-
tery, storage, cpu, and so on, which will result in a cost. The
cost of vj performing all tasks in Sj

k is denoted by cjk.
In the above system, the vehicles are deemed as common

office workers. That is, the primary goal of the vehicles is to
drive to their destinations, and the secondary goal is to per-
form some sensing tasks on their trajectories. All vehicles
may submit bids for their possible trajectories. However,
they select the trajectories according to the practical situation
(e.g., traffic condition) at that time, instead of selecting the
trajectories that maximize their benefits. Here, we assume
that the platform can derive the value of qjk from vj’s historic
movement records. This assumption is reasonable since the
platform can trace the daily movements of the vehicles, and

therefore, the platform can derive the trajectories and proba-
bilities of vehicles. We also assume that the time it takes each
vehicle to perform a task can be ignored since it is far less
than that of the vehicle visiting a PoI in magnitudes. Here,
we only consider the tasks that can be completed beforeD. If
a trajectory covers some extra tasks whose performing times
are beyond D, we will deem that these extra tasks cannot be
performed by the corresponding vehicle.

2.2 Reverse-Auction-Based Incentive Mechanism
In the vehicle-based, nondeterministic crowdsensing sys-
tem, the platform adopts a reverse-auction-based incentive
mechanism to select participants and to determine the pay-
ments for them after receiving the request from the platform
user. Since the tasks on a trajectory will be performed
together, the mechanism is actually based on a reverse and
combinatorial auction. The whole incentive mechanism
mainly includes five rounds of interactions between the
platform and vehicles, as illustrated in Fig. 2:

(1) The platform announces all PoI-related sensing tasks
in S as well as D to the vehicles in V after receiving
from the platform user.

(2) Each vehicle vj will reply to the platform with a set of
bids, each of which is a tasks-bid pair bj

k ¼ ðSj
k; b

j
kÞ, in

which Sj
k is the set of tasks covered by vj’s kth trajec-

tory and bjk is the cost claimed by vj for performing
all tasks in Sj

k. Here, the b
j
k is valid only when vj

moves along the kth trajectory and performs the
tasks in b

j
k (Note that, due to the nondeterminacy of

vj’s mobile behaviors, it cannot guarantee that the
claimed tasks in b

j
k will be performed indeed).

(3) After receiving replies from all vehicles in V, the
platform selects a set of winning bids, denoted by F,
from the received bids, denoted by G, to guarantee
that all tasks in S are performed with a probability
no less than a specified threshold h. A bid b

j
k2F

indicates that vj will be selected to perform the tasks
in Sj

k. After determining F, the platform will notify
the vehicles of the corresponding winning bids.
Also, the platform will determine the payment pjk for
each bid b

j
k in F.

(4) After receiving the winning bids, vehicle vj will per-
form the tasks in each winning bid b

j
k until D, when

vj moves along the kth trajectory. Moreover, vj will
send the results back to the platform after it com-
pletes all tasks in Sj

k.
(5) The platform will pay vehicle vj with the money pjk

for the bid b
j
k after receiving the results of Sj

k.
Note that the payment should be fair and the payoff of a

bid b
j
k, which is defined as pjk � cjk, should be reasonable to

attract more vehicles. However, the platform only knows
the claimed cost bjk instead of the real cost cjk that vj spends

Fig. 2. The interactions between the platform and vehicles.
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on performing Sj
k. In fact, cjk is known to nobody except vj

itself. vj may strategically manipulate bjk to get a higher pay-
off. Such strategic manipulation might force the platform
and the platform user to pay extra money. Thus, the whole
mechanism needs to ensure that each vehicle will not
manipulate its bids, i.e., the truthfulness.

2.3 Problem
In this section, we formalize the incentive mechanism
design problem for the above vehicle-based, nondeterminis-
tic crowdsensing system. The mechanism design problem
mainly consists of two subproblems: the winning-bid selec-
tion problem and the payment determination problem.

The optimization objective of the winning-bid selection
problem is to minimize social cost which is defined as the
sum of the winning bids’ real costs. The metric of social cost
indicates the total costs of thewhole systemperforming sens-
ing tasks, which is alsowidely concerned in other works [12],
[24], [40]. Additionally, the winning-bid selection problem
needs to meet the constraint that the joint probability of each
task being successfully performed by the related vehicles is
no less than the threshold h (0 < h < 1). For this constraint,
we denote the joint probability of a task si being performed
successfully as rFi and calculate it as follows:

rFi ¼ 1�
Y

b
j
k
2F^si2Sjk

ð1� qjkÞ:

The Minimum-social-Cost winning-Bid Selection (MCBS)
problem is formalized as follows:

min CðFÞ ¼
X

b
j
k
2F

cjk (1)

s.t. F � G; (2)

rFi � h; 1 � i � m: (3)

Here, (3) implies that the successful performing probabil-
ity of each task is no less than the threshold. Addition-
ally, we assume that there always exists at least one
feasible solution for this problem. This assumption is

reasonable since we can add more vehicles to V until the
problem is solvable.

Second, the payment determination problem is to compute
payments for winning bids. The payments should ensure that
the vehicles are willing to participate in the crowdsensing
and that they will not manipulate their claimed costs. Thus,
the payment computation needs to make the whole incentive
mechanism satisfy the following properties:

� Individual Rationality. Individual rationality indicates
that each winner should be paid with a value no less
than its real cost, which implies that each winner’s
payoff is not negative. Due to the non-negative
payoff, each winner is willing to participate in the
crowdsensing.

� Truthfulness. Truthfulness means that no bidder can
improve his or her payoff by submitting different
costs from the true values. According to Myerson’s
Theorem [41], a mechanism is truthful if and only if: the
winner selection rule is monotone and each winner is paid
with a critical value. The monotonicity indicates that if
vj wins the bid b

j
k when it claims a cost bjk for per-

forming Sj
k, it will still win the bid when claiming a

smaller cost b̂jk (�bjk). The critical value is the maxi-
mum bid value for a bid to win.

Additionally, the frequently used notations in this paper
are summarized in Table 1.

3 DESIGN OF INCENTIVE MECHANISM

In this section, we propose a reverse-auction-based incen-
tive mechanism consisting of solutions to the MCBS prob-
lem and the payment determination problem. We first
analyze the NP-hardness of the MCBS problem, and then
propose an approximation algorithm to resolve MCBS effi-
ciently. Next, we propose another algorithm to compute the
payments for all winning bids, which will induce the
vehicles to report their costs truthfully.

3.1 NP-Hardness of MCBS
First, we analyze the complexity of the MCBS problem and
derive the following theorem.

Theorem 1. The MCBS problem is NP-hard.

Proof. To prove the NP-hardness of the MCBS problem, we
first prove that a special case of MCBS, where the proba-
bilities of all trajectories are same (i.e., qjk ¼ h for 8j2½1; n�
and k2½1; lj�), is NP-hard. Since the constraint (3) can
always be met, the special MCBS problem is actually to
select a set of bids with least social cost to cover S. Now,
we introduce a well-known NP-hard problem, i.e., mini-
mum weighted set cover (MWSC) problem. Given a set of
elements S ¼ fs1; . . . ; si; . . . ; smg and the collection of
some subsets G ¼ fS1; . . . ; Sj; . . . ; Sng in which Sj�S
for 8j2½1; n� and Sj has a weight cj, find a least weight
collection F of subsets from G such that F covers all
elements in S. By mapping Sj and cj in MWSC to Sj

k
and cjk in the special case of MCBS, respectively, we
reduce the MWSC problem to the special MCBS prob-
lem in constant time. Obviously, the MWSC problem
is actually equivalent to the special case of MCBS.
Therefore, the special MCBS problem is NP-hard. Fur-
ther, the general MCBS problem is at least NP-hard
and the theorem holds. tu

TABLE 1
Frequently Used Notations

Notations Description

S;V the sets of tasks and vehicles, respectively.
i; j; k the indexes for tasks, vehicles and trajectories,

respectively.
Sj
k the set of tasks covered by vj’s kth trajectory.

qjk the probability of vj’s kth trajectory.

cjk the real cost that vj spends on performing Sj
k.

bjk the claimed cost (i.e., bid) for vj on Sj
k.

b
j
k the bid of vj, containing Sj

k and bjk.

pjk the payment for the bid b
j
k.

G, G�bj
k

the set of bids received by the platform, and the
set of bids except bj

k.
F, F0 the set of winning bids selected from G and G�bj

k
,

respectively.

rFi the joint probability of si being successfully per-
formed based on the winning bid set F.

h the threshold of the joint probability.
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Here, we emphasize that the MCBS problem is actually a
non-trivial set cover problem. This is because the objective
function of this problem is not an integer function. Further-
more, the constraint of this problem is a group of non-linear
real functions. Owing to these two characteristics, the set
cover approximation algorithms in [12], [15], [24], [42] can-
not be utilized directly to solve the MCBS problem.

3.2 Winning-Bid Selection Algorithm
Since the MCBS problem is NP-hard, we propose a winning-
bid selection approximation algorithm to solve it. Here, we
first assume that all vehicles report their costs truthfully, i.e.,
bjk ¼ cjk. We will prove that this truthful assumption is rea-
sonable and correct in the next section.

The approximation algorithm is based on a utility func-
tion and the marginal contributions of all bids in G. The util-
ity function UðFÞ is the sum of the probabilities that all tasks
in S are successfully performed with when selecting all bids
in F, defined as follows:

UðFÞ ,
Xm
i¼1

minfrFi ; hg: (4)

The marginal contribution function of a bid b
j
k2G�F is the

increased utility after adding b
j
k into F, defined as follows:

U
b
j
k
ðFÞ , UðF [ fbj

kgÞ � UðFÞ

¼
X

si2Sjk

ðminfrF[fb
j
k
g

i ; hg �minfrFi ; hgÞ:
(5)

The approximation algorithm mainly contains an itera-
tive bid selection process. In each round of iteration, we
greedily select the bid whose Marginal contribution Per
Cost (MPC) is the maximal to expand the winning set until
the utility of the whole winning set reaches the maximum
value. The detailed algorithm is presented in Algorithm 1.
At the beginning, the winning-bid set F is initialized as ? in
Step 1. From Step 2 to Step 7, the greedy strategy, based on
the utility function and the marginal contribution function,
is adopted to select the winning bids in Step 3.

Here, we point out that although the basic formalism of
our algorithm looks similar to the traditional set cover
approximation algorithms (e.g., [15], [24]), our algorithm is
intrinsically different from them. In general, the greedy cri-
terion of the traditional algorithms is directly the value of
the optimization objective defined in the problem. In con-
trast, our greedy criterion is the special utility function that
we build for MCBS. This utility function not only contains
the optimization objective of the MCBS problem, but also
takes the non-linear constraint (3) into consideration. Fur-
thermore, unlike existing algorithms that only deal with the
integer set cover problems, our algorithm can solve the set
cover problem with a real optimization objective function,
such as MCBS.

The correctness of Algorithm 1 is supported by the fol-
lowing theorem.

Theorem 2. Algorithm 1 can always produce a feasible solution
if MCBS is solvable.

Proof. If MCBS is solvable, selecting all bids in G will meet
the constraints of MCBS. That is to say, G is at least a feasi-
ble solution, i.e., rGi �h for 8si2S, and UðGÞ ¼ mh. Hence,
Algorithm 1 will terminate for sure, either before or when

all bids in G are added into F. When Algorithm 1 termi-
nates, UðFÞ ¼ mh, indicating that minfrFi ; hg ¼ h for
8si 2 S. Then, rFi �h for 8si2S, meeting the constraint
(3). Therefore, Algorithm 1 produces a feasible solution
for MCBS after it terminates, and the theorem holds. tu

Algorithm 1.Winning-Bid Selection Algorithm

Input: G; m; h; fqjkjSj
k 2 Gg before D

Output:winning bid set F, social cost CðFÞ
1: F ? ; UðFÞ  0; CðFÞ  0
2: while UðFÞ < mh do
3: Select a bid b

j
k from G�F to maximize

U
b
j
k

ðFÞ

b
j
k4: UðFÞ  UðFÞ þ U

b
j
k
ðFÞ

5: F F [ fbj
kg

6: CðFÞ  CðFÞ þ bjk
7: return F; CðFÞ

3.3 Payment Determination Algorithm
Besides the MCBS problem, the incentive mechanism also
needs to solve the payment determination problem, i.e., it
must decide how much to pay for each bid that is selected
by Algorithm 1 while ensuring that the mechanism is truth-
ful and individually rational.

To guarantee the truthfulness of the mechanism, the pay-
ment pjk for a winning bid b

j
k should depend on other bids in

G instead of bj
k itself. Therefore we first remove bj

k from G to
get a new bid set, denoted by G�bj

k
. Based on G�bj

k
, we reselect

a new winning-bid set that is denoted by F0. Assume that in
the qth round of iteration of this new selection,F0q is the win-
ning set, and the winning bid b

j0
k0 2 F0q. If b

j
k wants to win in

the qth round, the related cost must be no more than the
value bj

0
k0 � Ub

j
k
ðF0q�1Þ= U

b
j0
k0
ðF0q�1Þ. Otherwise, the MPC of bjk

will not be the maximal. We therefore determine pjk based on
this critical value. To guarantee the individual rationality,
the payment pjk must be no less than the real cost cjk. Hence,
we set pjk as themaximum critical value

pjk ¼ max
U
b
j
k

ðF0q�1Þ
U
b
j0
k0
ðF0q�1Þ

� bj0
k0 jq ¼ 1; 2; . . .

8<
:

9=
;: (6)

The detailed process is presented in Algorithm 2. The
algorithm traverses all bids in G to decide the payment for
each bid in Step 1. In Step 2, we initialize the payment pjk for
b
j
k as 0 and the new winning set F0 as ? . If bj

k is a winning
bid in Step 3, we expand F0 according to the greedy strategy
that is also used in Algorithm 1, and we set the payment as
the maximal critical value in Steps 4-9. Note that we use an
equivalent expression instead of (6) in Step 8.

3.4 A Walk-Through Example
To better understand the two algorithms in our incentive
mechanism, we use an example in Fig. 3 to show the pro-
cesses of Algorithms 1 and 2. In the example, m ¼ 4,
h ¼ 0:6, mh ¼ 2:4, q11 ¼ 0:35, q12 ¼ 0:4, q21 ¼ 0:4, q22 ¼ 0:45,
q31 ¼ 0:5, and G is marked in Fig. 3. Algorithm 1 is conducted
as follows:

� First round: F ¼ ? ; UðFÞ ¼ 0; CðFÞ ¼ 0.
� Second round: Due to UðFÞ ¼ 0 <2:4, we compute

U
b1
1
ðFÞ

b1
1

¼ 0:26,
U
b1
2
ðFÞ

b1
2

¼ 0:27,
U
b2
1
ðFÞ

b2
1

¼ 0:4,
U
b2
2
ðFÞ

b2
2

¼ 0:34,
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U
b3
1
ðFÞ

b3
1

¼ 0:5. Since
U
b3
1
ðFÞ

b3
1

is the maximal, we update

F ¼ fb3
1g; UðFÞ ¼ 1:5; CðFÞ ¼ 3.

� Third round: Since UðFÞ ¼ 1:5 < 2:4, we continue to

compute
U
b1
1
ðFÞ

b1
1

¼ 0:14,
U
b1
2
ðFÞ

b1
2

¼ 0:07,
U
b2
1
ðFÞ

b2
1

¼ 0:2,

U
b2
2
ðFÞ

b2
2

¼ 0:16. As
U
b2
1
ðFÞ

b2
1

is the maximal, we update

F ¼ fb3
1;b

2
1g; UðFÞ ¼ 2:1; CðFÞ ¼ 6.

� Fourth round: Owing to UðFÞ ¼ 2:1 < 2:4, we com-

pute
U
b1
1
ðFÞ

b1
1

¼ 0:08,
U
b1
2
ðFÞ

b1
2

¼ 0:03,
U
b2
2
ðFÞ

b2
2

¼ 0:08. WLOG,

we select b1
1 as the winner and update F ¼ fb3

1;
b2
1;b

1
1g; UðFÞ ¼ 2:4; CðFÞ ¼ 10. Now UðFÞ ¼ mh and

Algorithm 1 terminates.

Algorithm 2. Payment Determination Algorithm

Input: G;F;m; h; fqjkjSj
k 2 Gg before D

Output: the payment pjk for 8j 2 ½1; n� and 8k 2 ½1; lj�
1: for all bj

k 2 G do
2: F0  ? , pjk  0
3: if bj

k 2 F then
4: while UðF0Þ < mh do

5: Select bj0
k0 from G�bj

k
�F0 to maximize

U
b
j0
k0
ðF0Þ

b
j0
k0

6: UðF0Þ  UðF0Þ þ U
b
j0
k0
ðF0Þ

7: F0  F0 [ fbj0
k0 g

8: pjk  maxfpjk;
U
b
j
k

ðF0Þ
U
b
j0
k0
ðF0Þ � b

j0
k0 g

9: return pjk for 8j 2 ½1; n� and 8k 2 ½1; lj�

The above calculation shows that the set of winning bids
is F ¼ fb3

1;b
2
1;b

1
1g. Based on this result, Algorithm 2 is con-

ducted as follows:

� First round: Since b1
1 is a winning bid,

G�b1
1
¼ fb1

2;b
2
1;b

2
2;b

3
1g. In the rounds of iteration from

Step 4 to Step 9, the selected bids are b3
1;b

2
1;b

2
2, in

turn. Accordingly,
U
b1
1
ð?Þ

U
b3
1
ð?Þ � b31 ¼ 2:1,

U
b1
1
ðfb3

1
gÞ

U
b2
1
ðfb3

1
gÞ � b21 ¼ 2:75,

U
b1
1
ðfb3

1
;b2
1
gÞ

U
b2
2
ðfb3

1
;b2
1
gÞ � b22 ¼ 4. Hence, p11 ¼ 4.

� Second round: p12 ¼ 0, as b1
2 =2 F.

� Third round: Since b2
1 2 F, G�b2

1
¼ fb1

1;b
1
2;b

2
2;b

3
1g. In

the computations of Steps 4-9, the selected bids are

b3
1, b2

2, b1
1, in turn. Then

U
b2
1
ð?Þ

U
b3
1
ð?Þ � b31 ¼ 2:4,

U
b2
1
ðfb3

1
gÞ

U
b2
2
ðfb3

1
gÞ � b22 ¼ 3:69,

U
b2
1
ðfb3

1
;b2
2
gÞ

U
b1
1
ðfb3

1
;b2
2
gÞ � b11 ¼ 4. Hence, p21 ¼ 4.

� Fourth round: As b22 is not a winning bid, p22 ¼ 0.

� Fifth round: Since b31 is a winning bid, G�b3
1
¼

fb1
1;b

1
2;b

2
1;b

2
2g. In the rounds of iteration from Step 4

to Step 9, the selected bids are b2
1, b

2
2, b

1
2, in turn.

Accordingly,
U
b3
1
ð?Þ

U
b2
1
ð?Þ � b21 ¼ 3:75,

U
b3
1
ðfb2

1
gÞ

U
b2
2
ðfb2

1
gÞ � b22 ¼ 4:24,

U
b3
1
ðfb21;b22gÞ

U
b1
2
ðfb2

1
;b2
2
gÞ � b12 ¼ 3. Hence, p31 ¼ 4:24.

We can find that the payment for each winning bid is no
less than the related cost. Then v1 and v2 will perform the
tasks successfully and will send the sensing data back to the
platform. Hence, the platform only pays for b1

1 and b2
1 (as

shown in Fig. 4). In this example, since v3 does not perform
the tasks and send data back, it gets nothing.

4 QOD-AWARE INCENTIVE MECHANISM

In this section, we extend our problem to a case in which the
Quality of Data (QoD) is taken into consideration. We first
introduce the extended problem, where we integrate the
constraint (3) and the QoD constraint. After that, we pro-
pose the QoD-aware incentive mechanism consisting of a
winning-bid selection algorithm and a payment determina-
tion algorithm for the extended problem.

4.1 The Extended Problem
In addition to the successful probability, the QoD is also a
major factor that needs to be considered in mechanism
design, as pointed out by [20], [21]. The QoD indicates the
usability of the sensing data. It might be affected by various
factors including poor sensor quality, noise, lack of sensor
calibration, and so forth. We consider a general class of
crowdsensing applications in which the availability and
preciseness of services significantly depend on the QoD,
e.g., noise pollution monitoring and air quality monitoring.
In these cases, the qualities of the sensing data collected by
vehicles are different, and the platform user requires that
the total quality of the received data for each task be no less
than a threshold. More specifically, we assume that the plat-
form not only requires that the probability of each task
being successfully performed be no less than h, but also that
the QoD for task si be no less than �i. Additionally, just like
[21], we assume that the QoD profile of the vehicles,
denoted by R ¼ fr1; r2; . . . ; rng, is known to the platform
since the platform maintains a historical record of vehicles’
QoD profile R. R can be calculated from the ground truth
data or by utilizing algorithms such as those proposed in
[20], [43], [44], [45]. Thus, the platform will receive a request
including S; h; f�1; �2; . . . ; �mg from the user.

To design a truthful incentive mechanism for this sce-
nario, we need to solve both the winning-bid selection

Fig. 3. An example: v1; v2; v3 send their bids to the platform. Fig. 4. The result of the example: v1 and v2 perform their winning bids
and get the payments after sending the sensing data back; v3 gets noth-
ing since it does not perform the tasks in the winning bid b31.
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problem and the payment determination problem. In addi-
tion to the probability constraints, the winning-bid selection
must also meet the QoD requirements. As vehicle vj2F per-
forms each task in Sj

k with a probability of qjk, we can calcu-
late the QoD expectation value mF

i of task si as follows:

mF
i ¼

X

b
j
k
2F^si2Sjk

ðrjqjkÞ: (7)

In fact, the definition of QoD expectation value mF
i is

derived from the real-world example, e.g., crowd label-
ing [19], [34], where the sum of expectation values output-
ted by all winning vehicles denotes the final expected QoD.
Then, we can formalize the QoD-MCBS problem as follows:

min CðFÞ ¼
X

b
j
k
2F

cjk (8)

s.t. F � G (9)

rFi � h; 1 � i � m (10)

mF
i � �i; 1 � i � m: (11)

This QoD-MCBS problem can be simplified to MCBS
when we let rj�maxf�1; . . . ; �mg for 81 � j � n. Hence,
QoD-MCBS is also NP-hard and an approximation algo-
rithm is needed to solve this problem in polynomial time.

Algorithm 3. QoD-Aware Winning-Bid Selection
Algorithm

Input: G;m; h;R; f�1; �2; . . . ; �mg; fqjkjSj
k 2 Gg before D

Output:winning bid set F, social cost CðFÞ
1: F ? ; GðFÞ  0; CðFÞ  0
2: while GðFÞ < mhþPm

i¼1 �i do

3: Select a bid b
j
k from G�F to maximize

G
b
j
k

ðFÞ

b
j
k

4: GðFÞ  GðFÞ þG
b
j
k
ðFÞ

5: F F [ fbj
kg

6: CðFÞ  CðFÞ þ bjk
7: return F; CðFÞ

4.2 QoD-Aware Winning-Bid Selection Algorithm
To design an appropriate approximation algorithm, we first
propose a QoD utility function and a QoD marginal contri-
bution function. The QoD utility function F ðFÞ, which is
the sum of the QoD for all tasks, is defined as follows:

F ðFÞ ,
Xm
i¼1

minfmF
i ; �ig: (12)

Based on F ðFÞ, the QoD marginal contribution of a bid
b
j
k2G�F is the increased QoD utility after adding b

j
k into

F, defined as follows:

F
b
j
k

ðFÞ , F ðF [ fbj
kgÞ � F ðFÞ

¼
X

si2Sjk

ðminfmF[fbj
k
g

i ; �ig �minfmF
i ; �igÞ:

(13)

To combine the constraints (10) and (11), we define the
combination utility function GðFÞ as follows:

GðFÞ ¼ UðFÞ þ F ðFÞ; (14)

The corresponding combination marginal contribution is

G
b
j
k

ðFÞ ¼ U
b
j
k

ðFÞ þ F
b
j
k

ðFÞ: (15)

Based on the combination utility function and combina-
tion marginal contribution function, we propose the QoD-
aware winning-bid selection algorithm in Algorithm 3. Sim-
ilar to Algorithm 1, Algorithm 3 utilizes a greedy process in
which the bid, whose combination MPC is the largest in
each round of iteration, is added into the winning-bid set
until the utility function achieves the maximum value
mhþPm

i¼1 �i. We prove the correctness of Algorithm 3 in
the following theorem.

Theorem 3. Algorithm 3 can always produce a feasible solution
if QoD-MCBS is solvable.

Proof. Similar to Theorem 2, G is at least a feasible solution.
Hence, Algorithm 3 will terminate for sure either before
or after adding all bids in G into F. When it terminates,
GðFÞ ¼ UðFÞ þ F ðFÞ ¼ mhþPm

i¼1 �i. According to (4)
and (12), UðFÞ � mh and F ðFÞ �Pm

i¼1 �i. Hence, when
Algorithm 3 terminates, UðFÞ ¼ mh and F ðFÞ ¼Pm

i¼1 �i,
i.e., rFi � h and mF

i � �i for 8si2S. The theorem holds. tu

4.3 QoD-Aware Payment Determination Algorithm
To attract more vehicles and prevent them from manipulat-
ing the claimed costs, we need to decide a proper payment
for each bid that is selected by Algorithm 3.

Actually, the idea of QoD-aware payment determination
is similar to the basic payment determination in Section 3.3.
We set the payment for each winning bid as the maximum
critical value, i.e.,

pjk ¼ max
G

b
j
k
ðF0q�1Þ

G
b
j0
k0
ðF0q�1Þ

� bj0
k0 jq ¼ 1; 2; . . .

8<
:

9=
;; (16)

where the implications of the notations are the same as (6).
The detailed computation is presented in Algorithm 4.

The algorithm first checks whether a bid b
j
k is winning in

Step 3 and then recalculates the winning set when b
j
k is

excluded from G from Steps 4-9. For the winning bids, the
payments are the maximal critical values. For the losing
bids, the payments are exactly 0.

Algorithm 4. QoD-Aware Payment Determination
Algorithm

Input: G;F;m; h;R; f�1; �2; . . . ; �mg; fqjkjSj
k 2 Gg before D

Output: the payment pjk for 8j 2 ½1; n� and 8k 2 ½1; lj�
1: for all bj

k 2 G do
2: F0  ? , pjk  0
3: if bj

k 2 F then
4: while GðF0Þ < mhþPm

i¼1 �i do

5: Select bj0
k0 from G�bj

k
�F0 to maximize

G
b
j0
k0
ðF0Þ

b
j0
k0

6: GðF0Þ  GðF0Þ þG
b
j0
k0
ðF0Þ

7: F0  F0 [ fbj0
k0 g

8: pjk  maxfpjk;
G
b
j
k

ðF0Þ
G
b
j0
k0
ðF0Þ � b

j0
k0 g

9: return pjk for 8j 2 ½1; n� and 8k 2 ½1; lj�
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5 MECHANISM ANALYSIS

In this section, we prove that both the basic and QoD-aware
incentive mechanisms have the properties of truthfulness,
individual rationality and computational efficiency. We also
analyze the approximation ratios of Algorithms 1 and 3. In
each section, we first analyze the property of the basic
incentive mechanism and then analyze the QoD-aware
incentive mechanism based on the related property of the
basic incentive mechanism.

WLOG, we consider the qth round of iteration in Algo-
rithm 1. In this round, bj

k is the winning bid and is added
into the winning set Fq (a winning subset of G). Moreover,
we also consider the qth round of iteration for the payment
computation of bj

k in Algorithm 2 (See Steps 4-9), in which
the winning set is denoted as F0q (a winning subset of G�bj

k
).

Then, we prove the truthfulness and individual rationality
properties as follows.

5.1 Truthfulness
To prove the truthfulness of the mechanisms, we first give a
lemma on the winning set.

Lemma 1. Ft ¼ F0t, for 8t 2 ½0; q � 1�.
Proof. Note that Ft and F0t are the winning sets selected

from G and G�bj
k
respectively through the same greedy

strategy. Since b
j
k is the winner of the qth round, it must

have not been selected as a winning bid before the qth

round. Therefore, although G ¼ G�bj
k
[ fbj

kg, the winning

bids selected from G and G�bj
k
before the qth round are

the same. Hence, the lemma holds. tu
Second, we prove that our mechanisms are bid-mono-

tonic and payment-critical, which implies that the incentive
mechanisms are truthful.

Lemma 2. Algorithm 1 is bid-monotonic.

Proof. Since b
j
k wins in the qth round of iteration of Algo-

rithm 1, the MPC of bj
k, i.e., Ub

j
k
ðFq�1Þ=bjk, is the maximal

in this round, and it is no more than the MPC values of

all bids in Fq�1. Assume that bj
k reports a smaller cost b̂jk

(< bjk). As U
b
j
k

ðFq�1Þ=bjk < U
b
j
k

ðFq�1Þ=b̂jk, bjk still wins in

or even before the qth round according to the greedy

selection rule in Algorithm 1. Lemma 2 holds. tu
Lemma 3. The payments determined by Algorithm 2 for all win-

ning bids are critical.

Proof. Assume that the winning bid b
j
k reports a cost b̂jk

instead of bjk. To prove the criticality of the payment pjk,
we need to prove that bjk will fail if b̂jk > pjk, and that it

will win if b̂jk � pjk.

Case 1: b̂jk > pjk. We consider the qth round of iteration
in Algorithm 1 and derive that

U
b
j
k
ðFq�1Þ
b̂jk

¼
U
b
j
k
ðF0q�1Þ
b̂jk

<
U
b
j
k
ðF0q�1Þ
pjk

�
UbJ

K
ðF0q�1Þ
bJK

; (17)

where bJ
K is a winning bid, so that F0q ¼ F0q�1 [ fbJ

Kg. In
(17), the first equality depends onFq�1 ¼ F0q�1 in Lemma 1

and the last inequality depends on pjk � bJK � Ub
j
k
ðF0q�1Þ=

UbJ
K
ðF0q�1Þ according to (6). Hence, bJ

K is selected as the

winner instead of bj
k in the qth round of iteration. More-

over, Fq ¼ Fq�1 [ fbJ
Kg ¼ F0q. Repeating the above analy-

sis, we can see that bj
k will fail in all rounds of iteration of

Algorithm 1.
Case 2: b̂jk � pjk. WLOG, assume that Algorithm 1 runs

when the input bid set is G�bj
k
, which is exactly the pro-

cess of computing the payment for bj
k. According to (6),

we assume that pjk ¼ bJK � Ub
j
k
ðFq0�1Þ=UbJ

K
ðFq0�1Þ, where

bJ
K is the winner in the q0th round of iteration of this pro-

cess. Now, we run Algorithm 1 again with the input bid

set G. We discuss two subcases of this new process: 1) bjk
wins before the q0th round; 2) bj

k does not win before the

q0th round. In the q0th round of iteration

U
b
j
k
ðFq0�1Þ
b̂jk

�
U
b
j
k
ðFq0�1Þ
pjk

�
UbJ

K
ðFq0�1Þ
bJK

: (18)

Therefore, bjk wins in this round. Synthesizing both sub-
cases, bj

k wins when b̂jk � pjk.
In conclusion, the payments for all winning bids are

critical, and the lemma holds. tu
Theorem 4. Our basic incentive mechanism consisting of Algo-

rithms 1 and 2 is truthful.

Proof. According to Myerson’s theorem[41], our incentive
mechanism is truthful since the winning-bid selection
rule is monotone (i.e., Lemma 2) and each winning bid is
paid with a critical value (i.e., Lemma 3). tu

Theorem 5. Our QoD-aware incentive mechanism consisting of
Algorithms 3 and 4 is truthful.

Proof. Despite of the utility function and the termina-
tion threshold, the winning-bid selection methods in
Algorithms 1 and 3 are the same. Hence, Algorithm 3 is
also bid-monotonic according to Lemma 2. The payment
determination criteria and methods are also the same in
Algorithms 2 and 4. Thus the payments determined by
Algorithm 4 for all winning bids are also critical accord-
ing to Lemma 3. Then, based on Myerson’s theorem [41],
our QoD-aware incentive mechanism is also truthful. tu

5.2 Individual Rationality
In this section, we prove the individual rationality of the
incentive mechanisms and have the following theorems:

Theorem 6. Our basic incentive mechanism consisting of Algo-
rithms 1 and 2 is individually rational.

Proof. We assume that bJ
K wins in the qth round of iteration

of the inner loop (Steps 4-9) in Algorithm 2. Since bj
k is the

winner in the qth round of Algorithm 1

UbJ
K
ðFq�1Þ
bJK

�
U
b
j
k
ðFq�1Þ
bjk

: (19)

According to (6) and Lemma 1

bjk �
U
b
j
k
ðFq�1Þ

UbJ
K
ðFq�1Þ � b

J
K ¼

U
b
j
k
ðF0q�1Þ

UbJ
K
ðF0q�1Þ

� bJK � pjk: (20)
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As each vehicle reports its real cost in the truthful
incentive mechanism, we get cjk ¼ bjk. Hence, pjk � cjk,

indicating that the payoff of bj
k is non-negative. The theo-

rem holds. tu
Theorem 7. Our QoD-aware incentive mechanism consisting of

Algorithms 3 and 4 is individually rational.

Proof. Since the payment for each winning bid determined
by Algorithm 4 is the maximum critical value in (16), the
QoD-aware incentive mechanism is also individually
rational according to Theorem 6. The theorem holds. tu

5.3 Computational Efficiency
We prove the computational efficiency of the two mecha-
nisms in the following theorem.

Theorem 8. The basic and QoD-aware incentive mechanisms
have a polynomial-time computational complexity.

Proof. 1) The basic incentive mechanism is composed of
Algorithms 1 and 2. The computation overhead of Algo-
rithm 1 is dominated by Step 3, which can be denoted by
OðjSj

kjjGjÞ. Since Algorithm 1 loops at most jGj times, its
computational complexity is denoted by OðjSj

kjjGj2Þ.
Actually, since jSj

kj is much smaller than jGj, the compu-
tational complexity of Algorithm 1 can be deemed as
OðjGj2Þ for simplicity. For Algorithm 2, since the outer
loop (Step 1) runs jGj times and the complexity of the inner
loop (Steps 4-9) is OðjGj2Þ, the complexity of Algorithm 2
isOðjGj3Þ.

2) The QoD-aware incentive mechanism consists
of Algorithms 3 and 4. The computational complexity
of Algorithm 3 is the same as that of Algorithm 1, i.e.,
OðjGj2Þ. Meanwhile, similar to Algorithm 2, the computa-
tional complexity of Algorithm 4 is denoted asOðjGj3Þ.

Therefore, the theorem holds. tu

5.4 Approximation Ratio Analysis
In this section, we first analyze the approximation ratio of
Algorithm 1, followed by Algorithm 3.

5.4.1 Approximation Ratio of Algorithm 1

To figure out the approximation ratio of Algorithm 1, we
first analyze the properties of the utility function UðFÞ and
the optimization objective function CðFÞ. For simplicity of
description, we define two notations

pðijFÞ ,
Y

b
j
k
2F^si2Sjk

ð1� qjkÞ;

UðijFÞ , minfrFi ; hg:

In addition, we consider two arbitrary bid sets, F1 and F2,
F1 � F2 � G and a bid b

j
k 2 ðG�F2Þ. Then, we have:

Lemma 4. UðFÞ is an increasing function.

Proof. According to the decreasing property of pðijFÞ, rFi is

increasing. Therefore, r
F1
i � r

F2
i and UðijF1Þ � UðijF2Þ

for 8si 2 S. Then UðF1Þ � UðF2Þ when F1 � F2, which

implies that UðFÞ is increasing. tu
Lemma 5. UðFÞ is submodular.

Proof. WLOG, we assume that for two arbitrary bid sets X
and Y , X � G and Y � G. For 8si2S, we have the follow-
ing conclusions:

(1) pðijX [ Y Þ � pðijXÞ;pðijY Þ � pðijX \ Y Þ � 1 ;
(2) rX\Yi � rXi ; r

Y
i � rX[Yi � 1.

Based on these, we can get that

rXi þ rYi � ðrX[Yi þ rX\Yi Þ
¼ pðijX [ Y Þ þ pðijX \ Y Þ � ðpðijXÞ þ pðijY ÞÞ
¼ pðijX \ Y Þð1� pðijX � Y ÞÞð1� pðijY �XÞÞ � 0:

Hence

rXi þ rYi � rX[Yi þ rX\Yi : (21)

Now to prove that UðFÞ is submodular, we con-
sider the relationships between rX[Yi , rXi , rYi , rX\Yi ,
and h, which can be divided into the following four
cases:

Case 1: rX[Yi � h. Then

UðijXÞ þ UðijY Þ � UðijX [ Y Þ � UðijX \ Y Þ
¼ rXi þ rYi � ðrX[Yi þ rX\Yi Þ � 0:

Consequently

UðijXÞ þ UðijY Þ � UðijX [ Y Þ þ UðijX \ Y Þ; (22)

when rX[Yi � h.
Case 2: rX[Yi > hwhile rXi ; r

Y
i � h. Then

UðijXÞ þ UðijY Þ � UðijX [ Y Þ � UðijX \ Y Þ
> rXi þ rYi � ðrX[Yi þ rX\Yi Þ � 0:

Hence, (22) also holds in this case.
Case 3: rXi >h or rYi >h while rX\Yi � h. Consider rXi

and rYi :

(1) If one of them is larger than h, (22) holds because
both rXi and rYi are no less than rX\Yi ;

(2) If they are both larger than h, (22) is still correct
because rX\Yi � h.

Therefore, (22) is true in this case.
Case 4: rX\Yi > h. Now UðijXÞ þ UðijY Þ � UðijX [ Y Þ �

UðijX \ Y Þ ¼ 0, and (22) is valid.
In summary, (22) is valid in all cases. Hence, accord-

ing to the above analysis and the fact that UðFÞ ¼Pm
i¼1 UðijFÞ

UðXÞ þ UðY Þ � UðX [ Y Þ þ UðX \ Y Þ;

which indicates that UðFÞ is submodular. tu
Theorem 9. UðFÞ is a polymatriod function on 2G.

Proof. We have that UðFÞ ¼ 0 when F ¼ ? . According to
Lemmas 4 and 5, the theorem holds. tu

Theorem 10. CðFÞ is a polymatroid function on 2G.

Proof. According to CðFÞ ¼P
b
j
k
2Fc

j
k, CðFÞ is an increasing

function with Cð?Þ ¼ 0. As CðF1 [ fbj
kgÞ � CðF1Þ ¼ cjk �

CðF2 [ fbj
kgÞ � CðF2Þ, we have that CðFÞ is submodular.

Therefore, CðFÞ is a polymatroid function on 2G. tu
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Suppose f is the winning bid set after Algorithm 1 termi-
nates in the Qth round of iteration. Let u1 ¼
minfUbq

ðFq�1Þ
bq

jq ¼ 1; 2; 3; . . .Qg, where bq is the winning bid

in the q�th round, u2 ¼ CðfÞ
mh

, and u ¼ maxf 1
u1
; u2g. Utilizing

u, we derive a new utility function, U 0ðFÞ ¼ uUðFÞ, and the
new marginal contribution of b

j
k =2 F, U 0

b
j
k

ðFÞ ¼ uU
b
j
k
ðFÞ.

Moreover, we derive the following theorems:

Theorem 11. U 0ðFÞ is a polymatroid function on 2G.

Proof. According to Theorem 9 and the fact that u is a con-
stant, the theorem holds. tu

Theorem 12. The MCBS problem can be equivalently re-formal-
ized as

minfCðFÞjU 0ðFÞ ¼ U 0ðGÞ;F � Gg: (23)

Proof. On one hand, the constraint (3) are met when
UðFÞ ¼ mh (U 0ðFÞ ¼ umh) according to Theorem 2. On
the other hand, for 8si 2 S, minfrFi ; hg ¼ h, and U 0ðFÞ ¼
umh, if rFi � h, i.e., (3). That is to say, U 0ðFÞ ¼ umh is
equivalent to the constraint (3), and we can replace (3)
with U 0ðFÞ ¼ umh. Since U 0ðGÞ ¼ umh, we can equiva-
lently replace (3) withU 0ðFÞ ¼ U 0ðGÞ. The theorem holds.tu
According to Theorems 10, 11, and 12, the MCBS prob-

lem can be deemed as a minimum submodular cover with
submodular cost problem [46]. Additionally, we can derive
a new greedy algorithm that shares the same solution as
Algorithm 1 by replacing UðFÞ, U

b
j
k
ðFÞ, and mh in Algo-

rithm 1 with U 0ðFÞ, U 0
b
j
k

ðFÞ, and umh, respectively. The

derived algorithm also greedily selects the bid b
j
k, whose

MPC, i.e., U 0
b
j
k

ðFÞ=bjk, is the maximal in each round of itera-
tion. Then we can analyze the approximation ratio of the
derived algorithm based on the theorem in [46]:

Theorem 13. If in each iteration of a greedy algorithm, the
selected bid b

j
k always satisfies that U 0

b
j
k

ðFÞ=bjk�1, then the

greedy solution is a ð1þ lnðU 0ðGÞopt ÞÞ-approximation, where U 0 is
a polymatroid function on 2G, opt is the cost of a minimum sub-
modular cover, and U 0ðFÞ � opt.

Theorem 14. The derived algorithm achieves the ð1þ ln umh
opt Þ-

approximation of the optimal social cost, where opt is the cost
of the optimal solution to MCBS.

Proof. Note that U 0ðGÞ ¼ uUðGÞ ¼ umh. Consequently,
U 0ðGÞ � mhu2 ¼ CðfÞ � opt. Additionally, U 0

b
j
k

ðFÞ=bjk�U
b
j
k

ðFÞ=ðu1 � bjkÞ�1 for 8bj
k 2 F according to the definition

of u1. Hence, the approximation ratio of the derived

algorithm is ð1þ ln umh
opt Þ based on Theorems 10, 11, 12,

and 13. tu
Theorem 15. Algorithm 1 achieves the ð1þ ln umh

opt Þ-approxima-
tion of the optimal social cost, where opt is the cost of the opti-
mal solution to the MCBS problem.

Proof. Since the derived algorithm shares the same solution
with Algorithm 1, Algorithm 1 approximates the optimal
solution of MCBS within a factor of ð1þ ln umh

opt Þ according
to Theorem 14. tu

5.4.2 Approximation Ratio of Algorithm 3

After getting the approximation ratio of Algorithm 1, we
analyze Algorithm 3. We also define a notation

F ðijFÞ , minfmF
i ; �ig:

Consider two arbitrary bid sets, F1 and F2, F1 � F2 � G,
and a bid b

j
k 2 ðG�F2Þ. Then, we have:

Lemma 6. F ðFÞ is an increasing function.

Proof. Considering the definition in (7), we get mF1
i �m

F2
i

and F ðijF1Þ�F ðijF2Þ for 8si2S. Then, F ðF1Þ�F ðF2Þ
when F1�F2, which implies that F ðFÞ is increasing. tu

Lemma 7. F ðFÞ is a submodular function.

Proof. WLOG, we assume that for two arbitrary bid sets X
and Y , X�G, and Y �G. For 8si2S, we have the follow-
ing conclusions:

(1) mX\Y
i � mX

i ;m
Y
i � mX[Y

i ;

(2) mX
i þ mY

i ¼ mX[Y
i þ mX\Y

i .
Similar to the proof of Lemma 5, we have that
F ðijXÞ þ F ðijY Þ � F ðijX [ Y Þ þ F ðijX \ Y Þ is valid in
the following four cases:

(1) mX[Y
i � �i;

(2) mX[Y
i > �i while mX

i ;m
Y
i � �i;

(3) mX
i >�i or m

Y
i >�i while mX\Y

i ��i;
(4) mX\Y

i >�i.
Hence, F ðXÞ þ F ðY Þ � F ðX [ Y Þ þ F ðX \ Y Þ, and the
theorem holds. tu

Lemma 8. GðFÞ is a polymatroid function on 2G.

Proof. Since both F ðFÞ and UðFÞ are submodular based on
Lemmas 5 and 7, GðFÞ is submodular according to (14).
Meanwhile, GðFÞ is also an increasing function because
of the increasing property of F ðFÞ and UðFÞ. As
Gð?Þ ¼ 0, the theorem holds. tu
Suppose f is the winning bid set after Algorithm 3

terminates in the Qth round of iteration. Let a1 ¼
minfGbq

ðFq�1Þ
bq

jq ¼ 1; 2; 3; . . .Qg, where bq is the winning bid

in the qth round, a2 ¼ CðfÞ
mhþ

Pm

i¼1 �i
, and a ¼ maxf 1

a1
;a2g. Uti-

lizing a, we derive a new utility function, G0ðFÞ ¼ aGðFÞ,
and a new marginal contribution of b

j
k =2 F, G0

b
j
k

ðFÞ ¼
aG

b
j
k
ðFÞ. Similar to the proofs in Section 5.4.1, we can have

the following two theorems:

Theorem 16. G0ðFÞ is a polymatroid function on 2G.

Proof. According to Lemma 8 and the formula G0ðFÞ ¼
aGðFÞ in which a is a constant, the theorem holds. tu

Theorem 17. The QoD-MCBS problem can be equivalently
reformalized as

minfCðFÞjG0ðFÞ ¼ G0ðGÞ;F � Gg:

Proof. The constraints (10) and (11) are simultaneously met

when UðFÞ ¼ mh and F ðFÞ ¼Pm
i¼1 �i, that is, GðFÞ ¼

mhþPm
i¼1 �i and G0ðFÞ ¼ aðmhþPm

i¼1 �iÞ. On the other
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hand, if G0ðFÞ ¼ aðmhþPm
i¼1 �iÞ, i.e., UðFÞ ¼ mh and

F ðFÞ ¼Pm
i¼1 �i, for 8si2S, we have rFi �h (10) and mF

i ��i
(11). This indicates that G0ðFÞ ¼ aðmhþPm

i¼1 �iÞ is equiv-
alent to the constraints (10) and (11). Based on

G0ðGÞ ¼ aðmhþPm
i¼1 �iÞ, we can equivalently replace (10)

and (11) with G0ðFÞ ¼ G0ðGÞ. The theorem holds. tu
Based on Theorems 10, 16, and 17, QoD-MCBS can also

be deemed a minimum submodular cover with submodular
cost problem [46]. Similar to Section 5.4.1, when replacing
GðFÞ, G

b
j
k
ðFÞ, and mhþPm

i¼1 �i in Algorithm 3 with G0ðFÞ,
G0

b
j
k

ðFÞ, and aðmhþPm
i¼1 �iÞ respectively, we can get a new

algorithm which shares the same solution with Algorithm 3

and has the approximation ratio of ð1þ ln
aðmhþ

Pm

i¼1 �iÞ
opt Þ

where opt is the cost of the optimal solution to the QoD-
MCBS problem. Then, we have another theorem:

Theorem 18. Algorithm 3 achieves the ð1 þ ln
aðmhþ

Pm

i¼1 �iÞ
opt Þ-

approximation of the optimal social cost, where opt is the cost

of the optimal solution to the QoD-MCBS problem.

Proof. Since the derived algorithm of Algorithm 3 shares
the same solution to the QoD-MCBS problem, Algorithm
3 approximates the optimal solution of QoD-MCBS with

a factor of ð1þ ln
aðmhþ

Pm

i¼1 �iÞ
opt Þ. The theorem holds. tu

6 EVALUATION

We conduct extensive simulations to evaluate the perform-
ances of the proposed incentive mechanisms. The trace that
we used, the simulation settings, the metrics and the results
are presented as follows.

6.1 The Trace and Settings
We adopt the widely-used trace in [14] which contains the
GPS coordinates of approximately 320 taxi cabs collected
over 30 days in Rome, Italy. All of the taxi cabs in the trace
move along different streets in Rome day after day. In our
simulations, we select 50 main streets from the trace, as
illustrated in Fig. 5. In the selected streets, we randomly
deploy {100, 200, 300, 400} sensing tasks. Furthermore, we
choose 316 vehicles from the trace for our simulations by
excluding those vehicles that visit the selected streets with
low frequency.

In our simulations, we select 30 days’ records of GPS
coordinates for the chosen vehicles. We divide each day
into two equal-length sensing periods, i.e., [0, 12] and [12,
24], and thus divide 30 days into 60 periods. Moreover, we
let the sensing tasks be distributed in the same period and
let the D of the tasks be set as 12 hours. The probability of
each vehicle visiting a street (i.e., the probability of a trajec-
tory) is estimated as follows. First, we determine whether a
vehicle has visited a street in a sensing period by testing
whether the coordinates of this vehicle located in the street
during this period. Then, we count the number of sensing
periods during which a vehicle has visited a street. This
number divided by 60 is viewed as the average probability
of the vehicle visiting the street. Additionally, the real costs
of bids are generated based on three distributions, i.e.,
uniform distribution (UNM), normal distribution (NORM)
and exponential distribution (EXP). Each simulation is

conducted with the three distributions. All simulations in
this section are performed in JAVA on a Windows PC with
a 3.2 GHz Intel Core i5 CPU and 8GB memory.

6.2 The Evaluation Metrics, Methodology and
Results

To evaluate the performance of our mechanisms, we use the
following metrics: number of winning bids, successful perform-
ing ratio, social cost, overpayment ratio, truthfulness, and indi-
vidual rationality. The Number of Winning Bids (NWB)
measures the scale of crowdsensing. The Successful Per-
forming Ratio (SPR) is the ratio of the number of the suc-
cessfully performed crowdsensing tasks and the number of
all tasks. The overpayment ratio is defined as

� ¼ ðP � CðFÞÞ=CðFÞ;

where P is the total payment and CðFÞ is the total cost.
It measures the cost paid by the platform user to induce the
truthfulness of all vehicles. Truthfulness is the property
ensuring that no bidder can improve his or her payoff by
submitting a different cost from the real one. Individual
rationality is the property which ensures that the payoff of
each bid is non-negative.

The default settings of our simulations are shown in
Table 2. We set the default QoD values Q and R as 0, which
means that we conduct simulations for the basic incentive
mechanism. The results are shown as follows.

Number of winning bids: We depict the evaluation on the
NWB in Figs. 6, 10 and 16. We increase the number of tasks
to verify the impact on the NWB, and the results show that
the NWB will increase since we need more vehicles and
bids to perform more tasks. Additionally, more bids are
needed to meet constraint (3) when h increases, as shown in
Fig. 16. However, when the average of the real cost
increases, the NWB does not change much (see Fig. 10).
This is because we have to keep the joint probability no less
than h no matter how much it will cost. If C expands (i.e.,
the average cost increases), the MPCs of all bids will
decrease, leading to results with fewer changes. We also
find that the UNM needs the most bids and that the EXP
needs the fewest.

Successful performing ratio: Fig. 7 plots the successful per-
forming ratio when the number of tasks (i.e., m) changes
from 100 to 400. With the increase of m, more bids will be
selected, spontaneously leading to the increase of successful
performing ratios. Figs. 11 and 17 plot the SPR when
the cost range C and the threshold h increase, respectively.
The SPR does not change much in Fig. 11, since the number
of the winning bids changes little when C increases
(see Fig. 10). The results in Fig. 17 show that the SPR is

Fig. 5. The selected streets are noted by red marks on map of Rome.
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slightly larger than h. These results are reasonable, since the
SPR is in the constraint (3). Additionally, the distribution of
costs has little influence on the SPR based on the above fig-
ures. This is because we have guaranteed the successful per-
forming probability of each task in the bid selection process.

Social cost:We verify the performance of the social cost by
changing m, C, and h, and present the results in Figs. 8, 12,
and 18, respectively. These figures show that the social cost
will increase if we increase m, C, and h separately. This is
because with the increase of m and h, the mechanism will
select more bids to meet the constraint (3). If we increase the
average cost (i.e., expand C), the social cost will spontane-
ously increase. Additionally, the results in the three figures
show that the social cost of UNM is larger than those of
NORM and EXP. This is because the UNM produces greater
costs than the others do. Since NORM produces more mid-
dle-range costs, the social cost of NORM is always less than
that of the other two distributions.

Overpayment ratio: We depict the evaluation on overpay-
ment ratio � in Figs. 9, 13, and 19. The results show that � is
always less than 0.6, which means that the platform user
does not have to pay much extra money to induce truthful-
ness. If we increase m and h in Figs. 9 and 19, �will increase
in accordance. This is because more vehicles and bids will
be recruited and the increments of the payments are greater
than those of the costs. We find that when C increases in
Fig. 13, �will also increase since the truthfulness guarantees
that each payment is larger than the related cost and
that the increments of the payments are larger than those of
the costs.

Truthfulness and individual rationality: To verify the truth-
fulness of our incentive mechanism, we randomly pick a
winning bid, change its claimed cost, and recalculate the
related payments as well as the payoffs. The results are
illustrated in Fig. 14. The payment is 25.2, and the real cost

TABLE 2
Default Settings of Major Parameters

Parameter name Default value

Number of tasksm 100
Cost range C [10, 20]
Threshold of successful performing
probability h 0.6

Variance of NORM s 10
Quality Range of tasks Q [0, 0]
Quality Range of vehiclesR [0, 0]

Fig. 6. NWB versusm. Fig. 10. NWB versus C.

Fig. 7. SPR versusm. Fig. 11. SPR versus C.

Fig. 8. Social cost versusm.
Fig. 12. Social cost versus C.

Fig. 9. Overpayment ratio versusm.
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is 16. Then, the payoff is 9.2. We find that the payoff remains
unchanged if the claimed cost is no more than the payment.
Moreover, when the claimed cost is larger than the critical
value 25.2, the payoff becomes zero. We also verify the indi-
vidual rationality by comparing the real EXP cost of each
bid and the related payment, which is calculated when
m ¼ 100, h ¼ 0:6, and C ¼ ½10; 30�. Then we find that each
payment is greater than the related cost (see Fig. 15).

We also conduct simulations under the condition that Q
and R are not 0. More specifically, the range of Q is set as
f½10; 15�; ½10; 20�; ½10; 25�g, the range of R is set as ½10; 20�,
and the other parameters are set as the default values. The
results are shown in Figs. 20, 21, 22, and 23. Compared to
the results of the basic mechanism in Figs. 6, 8, and 9 when
m ¼ 100, the results in Figs. 20, 22, and 23 show that more
winning bids are needed, more social costs are spent, and
higher overpayment ratios are produced since we have to
meet the QoD constraint (11) besides the probability con-
straint. We also find that some SPRs in Fig. 21 are less than

the related value of h, e.g., SPR of UNM is 0.51 when h ¼ 0:6
and Q ¼ ½10; 15�. This is because if the QoD constraints of
some tasks are not met, we deem that these tasks are incom-
plete, even if they have been performed by a few vehicles.

7 RELATED WORK

There have been a few works [15], [16], [17], [18], [19], [20],
[21], [22], [23], [24], [28], [29], [30], [31], [32], [33] on the
incentive mechanism design for crowdsensing/crowd-
sourcing, which can be divided into two categories: offline
and online.

Offline Incentive Mechanism. In an offline scenario, the
crowdsourcer/platform is aware of all users, and no users
will come/leave during the process. In [15], Yang et al.
proposed two types of mechanisms to maximize the util-
ity of the corwdsourcer: CCM and UCM. They have
shown that their mechanisms perform well by proving
the unique Stackelberg Equilibrium of IMCC in CCM and
giving the approximation ratio of IMCU in UCM. Feng

Fig. 16. NWB versus h.

Fig. 17. SPR versus h.
Fig. 13. Overpayment ratio versus C.

Fig. 14. Payoff of a bid.

Fig. 15. Payments versus costs.

Fig. 18. Social cost versus h.

Fig. 19. Overpayment ratio versus h.

Fig. 20. NWB versusQ.
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et al. solve the problem of location-aware collaborative
sensing in mobile crowdsourcing in [24] by proposing
TRAC. They formulate WBDP as a linear set cover prob-
lem with minimum social cost and present an approxima-
tion algorithm that can approach the optimum solution
within a factor of 1þ lnðnÞ. Zhang et al. [18] consider a
scenario where a crowdsourcing job requires the collec-
tive effort of multiple participants. They propose incen-
tive mechanisms for three models: SS-Model, SM-Model,
and MM-Model. In [25], Luo et al. propose a different
incentive mechanism based on an all-pay auction model, in
which every bidder must pay for his bid regardless of
whether he wins or losses the auction.

In addition, some works focus on the mechanism design
for special problems, e.g., image labeling and noise sensing.
In [19], Zhang et al. study the problem that how to stimulate
workers to perform binary labeling tasks while maximizing
the utility of the platform and meeting budget constraints.
They profile the quality of the workers with Beta distribution
functions and calculate them by Bayes’ rule. In [20], [21], the
authors incorporate the consideration of data quality into
the design of incentivemechanism for noise sensing. Jin et al.
[21] prefer to maximize social welfare while ensuring that
the quality of each task is no less than a given threshold.
Peng et al. [20] propose a mechanism to maximize the
platform’s profit. They estimate the quality of sensing data
via the well-known expectation maximization algorithm
and quantify the participants’ contributions through infor-
mation uncertainty reduction.

Online Incentive Mechanism. Different from the offline sce-
nario, in an online scenario the statuses of users are
dynamic. That is to say, the users and tasks come and leave
randomly, and the crowdsourcer/platform only sees part of
its users in one time interval. Considering this scenario,
Zhao et al. [16] propose two online mechanisms, OMZ and
OMG, that adopt a multiple-stage sampling acceptance pro-
cess to maximize the value of the crowdsourcer without
sacrificing utility. To satisfy the budget constraint, their
mechanisms utilize the density threshold to filter out
inapposite users. Moreover, both OMZ and OMG are

competitive with the offline scenario. Zhang et al. [22]
design three online, reverse-auction-based incentive mecha-
nisms: TBA, TOIM, and TOIM-AD. TBA uses the first batch
of bidders as a sample and makes decisions on the second
batch of bidders. It is designed to pursue the maximization
of the platform utility. TOIM is a truthful online mechanism
which is highly competitive with the optimal solution in the
zero arrival-departure model. TOIM-AD extends TOIM to
the non-zero arrival-departure model. In [23], Zhu et al. first
propose an offline mechanism where the platform knows
the active time and the arrival time of each task at the begin-
ning of the crowdsourcing. Based on this offline mecha-
nism, they propose the online social welfare maximization
mechanism which divides time into slots, finds the near-
optimal solution, and decides the payments in each slot.
The task allocation algorithm in the online mechanism
achieves a constant competitive ratio of 1

2. In [17], Wei et al.
consider stimulating both service users and providers
to participate in mobile crowdsourcing and model the inter-
actions as an online double auction. They propose an
expressive general framework that is suitable for different
price schedules.

8 CONCLUSION

In this paper, we first design a truthful incentive mechanism
for vehicle-based, nondeterministic crowdsensing, where
the sensing tasks are performed with different probabilities
and the probability of each task being successfully per-
formed is no less than a threshold. After considering a more
complex scenario where the platform has a requirement on
the QoD, we also design a QoD-aware incentive mecha-
nism. Through rigorous theoretical analysis, we prove that
both incentive mechanisms have the properties of truthful-
ness, individual rationality, computational efficiency and
social cost efficiency. Finally, we conduct lots of simulations
on a real trace to verify the significant performances of our
incentive mechanisms.
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Fig. 21. SPR versusQ.

Fig. 22. Social cost versusQ.

Fig. 23. Overpayment ratio versusQ.
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